Florida Department of Education
Student Performance Standards

Course Title:	Foundations of Programming
Course Number:	9007210
Course Credit:	1

Course Description:

This course introduces concepts, techniques, and processes associated with computer programming and software development.

	CTE Standards and Benchmarks

	1. Use oral and written communication skills in creating, expressing and interpreting information and ideas. The student will be able to:

	0. Select and employ appropriate communication concepts and strategies to enhance oral and written communication in the workplace.

	0. Locate, organize and reference written information from various sources.

	0. Construct writings and/or communications using developmentally appropriate terminology.

	0. Analyze the positive and negative impacts of technology on popular culture and personal life.

	0. Discuss how technology has changed the way people build and manage organizations and how technology impacts personal life.

	0. Evaluate ways in which adaptive technologies may assist users with special needs.

	0. Explain how societal and economic factors are affected by access to critical information.

	0. Discuss the challenges (e.g., political, social, and economic) in providing equal access and distribution of technology in a global society.

	1. Explore the characteristics, tasks, work attributes, options, and tools associated with a career in software development. The student will be able to:

	1. Explore a variety of careers to which computing is central.

	1. Discuss the impact of computing on business and commerce (e.g., automated inventory processing, financial transactions, e-commerce, virtualization, and cloud computing).

	1. Evaluate the impacts of irresponsible use of information (e.g., plagiarism and falsification of data) on collaborative projects.

	1. Identify tasks performed by programmers.

	1. Describe how businesses use computer programming to solve business problems.

	1. Investigate job opportunities in the programming field.

	1. Explain different specializations and the related training in the computer programming field.

	1. Explain the need for continuing education and training of computer programmers.

	1. Understand and identify ways to use technology to support lifelong learning.

	1. Explain software as a service (SaaS) and how it impacts business.

	1. Describe ethical responsibilities of computer programmers.

	1. Identify credentials and certifications that may improve employability for a computer programmer.

	1. Identify devices, tools, and other environments for which programmers may develop software.

	1. Demonstrate an understanding of the characteristics, use, and selection of numerical, non-numerical, and logical data types. The student will be able to:

	0. Identify the characteristics (e.g., size, limits) and uses of different numerical and non-numerical data types.

	0. Explain the types and uses of variables in programs.

	0. Determine the best data type to use for given programming problems.

	0. Compare and contrast simple data structures and their uses.

	0. Identify the types of operations that can be performed on different data types (e.g., math operations on numerical data types, concatenation, and other string operations).

	0. Evaluate arithmetic and logical expressions using appropriate operator precedence.

	0. Explain how computers store different data types in memory.

	0. Demonstrate the difference between "data" and "information".

	0. Use different number systems to represent data.

	0. Explain how national and international standards (i.e., ASCII, UNICODE) are used to represent non-numerical data.

	0. Use Boolean logic to perform logical operations using Boolean algebra and truth tables.

	1. Distinguish between iterative and non-iterative program control structures. The student will be able to:

	1. Identify the uses of non-iterative and iterative programming structures using pseudocode and flowcharts.

	1. Create iterative programming structures and their uses.

	1. Explain how sequence, selection, and iteration are building blocks of algorithms.

	1. Describe the processes, methods, and conventions for software development and maintenance. The student will be able to:

	2. Describe a software development process that is used to solve problems at different software development stages.

	2. Define alternative methods of program development (e.g., rapid prototyping, waterfall, spiral model, peer coding).

	2. List and explain the steps in the program development cycle.

	2. Describe different types of documentation used in the program development cycle (e.g., requirements document, program design documents, test plans).

	2. Describe different methods used to facilitate version control.

	1. Explain the types, uses, and limitations of testing for ensuring quality control. The student will be able to:

	3. Explain the uses and limits of testing in ensuring program quality.

	3. Explain testing performed at different stages of the program development cycle (e.g., unit testing, system testing, user acceptance testing).

	3. Describe and identify types of programming errors.

	1. Create a program design document using common design tool. The student will be able to:

	4. Describe different design methodologies and their uses (e.g., object-oriented design, structured design, rapid application development).

	4. Describe and use tools for developing a program design (e.g., flowcharts, design documents, pseudocode).

	4. Explain the role of existing libraries and packages in facilitating programmer productivity.

	4. Participate and contribute to a design review of a program design developed using a common program design tool (e.g., UML, flowcharts, design documents, pseudocode).

	4. Develop a software artifact (independently and collaboratively) in phases (or stages) according to a common software development methodology (e.g., Waterfall or Spiral model).

	4. Define input and output for a program module using standard design methodology.

	1. Solve problems using critical thinking skills, creativity and innovation. The student will be able to:

	5. Employ critical thinking skills independently and in teams to solve problems and make decisions.

	5. Employ critical thinking and collaborative skills to resolve conflicts.

	5. Identify and document workplace performance goals and monitor progress toward those goals.

	5. Conduct technical research to gather information necessary for decision-making.

	5. Discuss digital tools or resources to use for a real-world task based on their efficiency and effectiveness, individually and collaboratively.

	1. Describe the importance of security and privacy information sharing, ownership, licensure and copyright. The student will be able to:

	6. Describe security and privacy issues that relate to computer networks including the permanency of data on the Internet, online identity, and privacy.

	6. Discuss the impact of government regulation on privacy and security.

	6. Describe how different types of software licenses (e.g., open source and proprietary licenses) can be used to share and protect intellectual property.

	6. Explain how access to information may not include the right to distribute the information.

	6. Describe differences between open source, freeware, and proprietary software licenses, and how they apply to different types of software.

	6. Discuss security and privacy issues that relate to computer networks.

	6. Identify computer-related laws and analyze their impact on digital privacy, security, intellectual property, network access, contracts, and harassment.

	1. Create programs that solve a problem using non-iterative and iterative algorithms. The student will be able to:

	0. Apply the developmental cycle methodologies to create a program.

	0. Develop a program using string and/or numeric data types.

	0. Develop a program using sequential algorithms.

	0. Develop a program using selection structures.

	0. Develop a program using looping structures.

